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Time-Dependent Fluorescence Spectra of Large Molecules in Polar Solvents
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A method is described for incorporating the vibronic transitions of a solute molecule in the calculation of the
time evolution of its fluorescence spectrum in a polar solvent. In this initial article, systems are treated in
which the intramolecular vibrational relaxation is much faster than the observed delay time. The overall
fluorescence spectrum is then shown to be a convolution of the steady-state absorption and emission spectra
of the solute in anonpolar solvent and the time-dependent emission line shape arising only from polar
interactions. Calculations are made for coumarin 153 in acetonitrile, using the dielectric dispersion data of
the solvent available from experimental measurements. The results are in encouraging agreement with
experimental spectra. Results are also given for the dynamic Stokes shift in methanol.

1. Introduction differences’® On the basis of similar calculations and com-
] o parisons with experiments, it has been noted that it would be
The dynamics of polar solvents has been studied in chargeysefyl to obtain higher frequency dielectric data for a better
redistribution processes in many chemical reactions and phOtO'description ofS(t), the solvation correlation functioH.
induced processés?® Pioneering works, in both theory and

experiment in nanosecond time scales, were performed by
Bakhshiev, Mazurenko, and their coworké&ré. Experimentally,

the time-dependent fluorescence shift (tlypamic Stokes shift
has been measured over different time scales and for a variet
of polar solvent$715 In typical Stokes shift experiments a
chromophoric solute dissolved in a polar solvent is first excited
by a pump pulse, and the time-dependent fluorescence spectru
of the solute is then recorded. For studies with coumarin or
other dye molecules (e.g., refs-I5), the excited state of the
solute has a charge distribution quite different from that of the
ground state. The change in charge distribution causes the pola
solvent to adjust its configuration to minimize the interaction
free energy. Such processes have been monitored by measurin
the dynamics Stokes shifft):

Much attention has been devoted to treating theoretically the
spatial dependence of dielectric response functigh, w),
which includes the molecular nature of solvéhtThe dynami-
cal mean spherical approximation theory has been used, for
Yexamplel82021 A systematic comparison of ttt) predicted

by dynamical mean spherical approximation theory with that
in experiments was reported in ref 9. It was found there that a
ower dynamics is usually predicted by the dynamical mean
spherical approximation theory, when the solute is modeled as
a dipolar sphere. A molecular hydrodynamic théé#j has
been applied to a variety of systems with a model dielectric
esponse function. Agreement between the experimental and
calculated solvation correlation function was reported for
faterz3.24 alcohols? and acetonitril€® Molecular dynamics
calculations have provided information on the influence of polar
solvents on the reaction rateind on the role played by various
Sty = v —v(0) 1) shells of solvent moleculé§:?® The short-time solvation
v(0) — v(0) dynamics has also been interpreted in terms ahatantaneous
normal modesanalysis of molecular dynamics simulaticts.
wherew(t) is either the peak or the averaged frequency of the  The line shape of the time-evolving emission spectrum is
transient emission spectrum. considered in the present work. Mukamel and co-workers have

It has been shown for coumarin 153 (C153) in polar solvents developed formal expressions for various optical proceSsés.
that such Stokes shift measurements can be described in term#n those works the transient emission spectrum was expressed
of the polar solvation processg¥14.15.21.30 For systems with in terms of a direct summation over all vibronic transitions, in
an infinitely short pump pulse§(t) is expected to follow the which each transition is described by the time evolution of a
normalized classical correlation function of the interaction single transition between two vibronic states and that evolution
energy between the solute and soh&n#> However, when was derived from the perturbation thedPy Maroncelli and co-
the pulse has a finite duration, it has been shown thaB{t)e worker$4142and Mazurenkbhave provided a phenomenologi-
is a linear combination of the classical and quantum correlation cal description for estimating the fluorescence at time zero. At
functions of the interactioff a combination in which the the very short time limit, it was assumed that the solvent is
guantum correlation term vanishes in the limit of a very short frozen but that the internal vibrational relaxation in the solute
pump pulse. molecule is already complete. We recall the results here for

Theoretical developmeris2® have provided much physical ~ discussion and application later:
insight into solvation dynamics. Solvation correlation functions  Following Maroncelli and Mazurenk®?? the zero-time
calculated from the Debye form, the Davidse@ole and the fluorescence can be written as proportional to a quarkitity
Cole—Cole forms have been shown to exhibit significant given by
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Large Molecules in Polar Solvents
Fo(w,t=0,0,,) =
3 o n n n n
0’0g [~ A" Guwe — 0") fo( — ") py0”) (2)

wheregng(w) describes the absorption spectrum of the solute
molecule andf,,(w) is the emission line shape, both in a
nonpolar solvent. Thpi(w) describes the probability distribu-
tion of the polar solvent configurations which have a given
energy differencéaw between the two states of the solute
molecule, sampled from the polar solvent configurations in
thermal equilibrium with thgroundelectronic state of the solute
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the nonpolar interactions between the solute and solvent as well
as the intramolecular vibrational motion are treated as instan-
taneous, while in the literature a Brownian oscillator model is
sometimes used:*3 The remaining motion is the electrostatic
interaction between the solute and the polar solvent. It is
assumed to provide all the measurable dynamics in the current
upconversion fluorescence experiments.

The outline of the paper is as follows: The general theoretical
description of the fluorescence spectrum is presented in section
2.1. The separation of contributions from the above time scales
of motion to the interaction energy is made in section 2.2. The

molecule. Such an energy difference of the two solute electronic results of applying expressions obtained in section 2 to C153

states is assumed to arise from the polar setatdvent
interaction. Thuspi(w) would have been the absorption line
shape in polar solution, if there had been only a difference in
the polar interactions of the ground- and excited-state Hamil-

in acetonitrile, using the dielectric continuum model with
experimentak(w) data, are given in section 3. The results are
discussed in section 4. It has been pointed“dnta treatment

of the dynamic Stokes shift that the inclusion of some

tonians. In applying eq 2, the nonpolar reference absorption description of the electronic polarizability of the soR#&45

and emission spectra are used to obtjiw) andfn(w):24142
wGn(w) O Ayw)

0% (@) O Fp(o)

®)

(4)

where Ay, is the absorption spectrum aritl,, is the steady-

state emission spectrum, for the same solute in a nonpolar

reference solvent.

One might imagine that an extension of eq 2 for a phenom-
enological description of the time-dependent fluorescence can

be written a$

Fo(w.twg,) = a)3a)exf:°dw' f_mwdw” X
gnp(wex - (,U”) fnp(w - (U’) p(a)',t;a)”) (5)

wherep(w'.t;w") is the time evolution of a probability distribu-
tion for the energy difference of the two states of the solute
that have a energy differené@’ att = 0 which then drifts to
ho' at timet, if only polar solute-solvent interactions were
included. This drift in the energy difference is due to the
difference in charge distributions of solute in the two electronic
states. Thusp(w'.t;w") can also be regarded as the time
evolution of the emission spectral line shape (with emission
frequencyw') when the pump frequency " for the two-
state solute if there were only the polar interaction with the
solvent. The desired properties pfw' t;w") are

p(o' 1=0;0") = py(@") 6(v' — " (6)

lim p(o ) = py(”) pe) (7)

leads to an improved agreement, and that behavior is also found
here. Concluding remarks are given in section 5.

2. Theory

2.1. General Formalism for the Time Evolution of the
Fluorescence Spectrum. The time evolution of the fluores-
cence spectrum has been treated by Mukamel and co-work-
ers37:38 With their formalism, the time-dependent emission
spectrumF(w,t;wey), the spectral intensity at time of the
fluorescence at frequeney when the frequency of excitation
iS wex can be calculated from the perturbation the$ryThe
solute molecule is considered to have two electronic stgtés
and |e[] whose energies are dependent on both the internal
vibration coordinates and the configuration of the solvent
molecules. Under the Condon approximation, an explicit
expression forF(w,t;wex) can be obtained using fourth-order
perturbation theory for the interaction between the material and
the radiation to calculate the time evolution of the density
matrix:37.38:40
F(o.twe) =

Eu 2 t t t
ra Re/  dt, [ dt, [*_dt, x

g™ eft)er(L)R(ty Ltsit) (8)

ZEZM
=

where Re denotes the real part of the functiBpnand E, are

the electric field strengths of the pump pulse and the emitting
light, respectivelyu is the transition dipole momerg(t) is the
profile of the pump pulse, an® is a four-point correlation
function:

i pta—t —i pt—t
where the first property is needed to yield eq 2 as a special Rty tzt) = @XP_E ﬁ:, t11X(T1) dr, exp+? fo %(t,) deD

case of eq 5, and the second property means that at very long 9)
time, the spectral shifts’ andw'" are independent. Thz(w')

denotes the equilibrium probablllty distribution of energy Here’ exp (exp_) is the time-ordered (reverse_ordered) expo-
difference (spectral shift), sampled from solvent configurations nential function/#-Cindicates that the quantity is averaged over
in thermal equilibrium with theexcitedstate solute charge 3 thermal equilibrium with solute molecule in theound state
distribution. Thugpy(w') is also the steady-state emission line  (=Tr[e #He--]), andy is the difference in Hamiltonians:

shape for the two-state solute when only polar interactions with
the solvent are considered.

In the present work it is shown that eq 5 can be obtained
from perturbation theory using Mukamel's formalism. The whereHe andHgare the Hamiltonians for the excited-state and
result provides a method for including the vibronic transitions ground-state solute molecule, respectively. They are dependent
of the dye molecule in the time-dependent fluorescence spec-on both the intramolecular and intermolecular configurations.
trum. The major physical approximation made is a time They(z) in eq 9 is the time evolution of under theground
separation of the motions. For the purpose of the present article,state Hamiltonian:

x=He— Hg (10)
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Figure 1. Double-sided Feynman diagram for the process of excitation
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O~ ~t, <ty ~t (16)
Equation 16 implies a significant time difference between the
optical absorption (&t, t;) during the pulse and the subsequent
fluorescence (ats, t) after the pulse. At the observation time
t, the algebraic sum of the latter foQterms in eq 12{(t — ty)

— &tz — t1) — &*(t — tp) + &*(t3 — tp), is approximated by a
Taylor expansion at time, to second order ir, t;, and

(t — t3):

Et—t) — Qs —t) — T (t—t) + Tt —tp) =
2i(t —tz) Im &' (t) + (t, — t)(t — t;) Red"(t) —
it, +t, +t—t)(t—ty) Im " (1) (17)

where the primes denote the first and second derivativé@)of
and Re and Im denote the real part and imaginary part of the
functions, respectivel§® The first term in the right-hand side

of eq 17 is the leading term of the algebraic sum of the fur

and fluorescence for a two-state system. In this diagram, the density functions. It results in a spectral shift in the Fourier transform
matrix is represented by the two vertical lines. The line on the left {5 the frequency domain. Thereby, those f@uiunctions in

represents the ket and the line on the right represents the bra, with

time running vertically from bottom to top. An interaction with the
radiation field is represented by an arrow. The direction of such an
arrow determines the sign of the wave vector contribution to the
polarization, which is not explicitly considered in the present sttidy.
andt; are any two times occurring during the absorption (pump) pulse.
In the integration in eq 8, the excitation timgsndt, can be reversed.

tz andt are the two times when fluorescence occurs.

() = &My g iHarhh

Using the second-order cumulant expan&idor Rin eq 9, we
have

(11)

R(t11t21t3;t) =
ST TALTIF LT Dk exp-1MA[E(L, — ty) + Tt — ty) +

(S tl) - C(ts - tl) —o(t— tz) + C*(ts - tz)] (12)

with
E(x) = [dr, [ dr, X(ry) X(z,)0 (13)

= J'du (r — u)X(u) X(0)1 (14)

X=y— G0 (15)

The stationarity of the correlation functidiX(z1) X(r2)Owas
used in obtaining eq 14.

The diagram corresponding to the evolution of density matrix
used in obtaining eq 8 is given in Figure 1. In eq 12, the terms
E(t; — t1) and £*(t — t3) are related to the line shapes of the
absorption and emission spectra, respecti¢elfhe remaining
four ¢ terms in the exponent dR(ty,t,t3t) in eq 12 can be
simplified as follows: The ranges @f andt, are limited by
the excitation pulse profileg(t), while the observation of
fluorescence at timecan be much later. The time € t3) is
limited by the decay time of exp[¢*(t — t3)/h?. For example,
for systems at room temperature (such as in ref 9) with a
reorganization energy of the order 1000 cmt arising from
the polar solvation, the decay time for both exg[t, — t1)/h?]
and exp[-¢*(t — t3)/A? is of the order of 10 fs (cf. eq 27 below).
The latter limits|t, — t;] and|t — t3] to be of the order of 10 fs.

It is then reasonable to assume, for a simplification of the
exponent in eq 12, that

the exponent of eq 12 generate the time-dependent spectral shift,
among other (higher order) effects.

In the next section, we describe a way of treating the
intramolecular vibrational modes of the solute molecule.

2.2. Treatment of the Internal Vibrational Relaxation.
For a polar molecular such as C153 in a polar solvent, the
ground-state and excited-state energies have a different depen-
dence on the internal vibration coordinate and on the solvent
configuration. The solvent part can be considered to be
composed of both nonpolar and polar interactions. The nonpolar
interaction arises, in part, from any difference in size or shape
of the wave functions of the two electronic states, and the polar
part arises from the electrostatic interaction of the solvent
polarization with the different charge distribution of the ground
and excited states of the solute molecules. Therian be
divided into two parts:

X=X+ X,

whereX; arises from the intramolecular vibrations of the solute
and the van der Waals type of nonpolar interaction between
the solute and solvent, both treated here as fXsiis the part
of energy difference arising from the electrostatic interaction
between the solute and polar solvent, which then provides the
major contribution to the dynamic Stokes shift and is assumed
to respond more slowly than thé for the present study. For
studies with higher time resolution or for other solutes and
solvents, the assumption that tKeresponse is instantaneous
can be removed by using a model, Brownian oscillators for
example3’43and we may do so later for a related problem.
Assuming X; and Xs to be statistically independent, the
correlation function inX can be separated as

X(zy) X(r) 0= X (71) X; (7T X((71) X(7)0 (19)
The corresponding function becomes
&) =& () + &)

For the fast modegX; (t) X; (O)Tis assumed to decay to zero
before the fluorescence is observed in the experiment. Namely,
we approximate the correlation function arising from such fast
motions by its long time limit. Thereby, the fast mode
contribution to the right-hand side of eq 17 yield§t 2- t3)A; /

h arising from the first term, and zero from the other two terms,

(18)

(20)
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where/s is Flo,twe) O L/iwwdw'ffwdw” X
A= —(Lh)im 1m &' () Y(we — @) f (0 — @) plo' — wptiw"” — wg) (26)

= —(1/h) j:olm X (1) X; (O)dt (21) with wo = (AGY + Ag)/A. The equation above is of the form
given by eq 5. The factos® andwey are obtained by summing

[The second equality in eq 21 can be seen from the definition OVer the emission photon mode and converting the number of
of £(t) in eq 13] With the above definitioni; is the  absorption photons into energy uris.

reorganization energy arising from the fast motfeghis fast- To integrate eq 25 for the purposes of the present paper, a
mode contribution, & — ts)A¢ /A, yields a constant spectral shift ~Gaussian optical pulse(t) ~ exp(-t?/z,?), is assumed, though
2);/h in the emission frequency when introduced into eqs  this assumption is a convenience rather than a necessity. When

12 and 8. the Gaussian approximatizh
In rewriting the time-dependent fluorescené@ t;wey) iN , ’
eq 8 with the separation of fast and slow modes, eq 20 is used exp(-1h) L) ~ exp-Aks TEIH?) (27)

for all six & functions in eq 12. The approximation given in eq
17 is used, with the terms for fast modes being simplified as iS used to obtain the Fourier transformif’,t;z"), the result
described above, and the result is used to reVftet;wey) in of these manipulations yields

eqg 8. Such manipulation is followed by a rearrangement of

the various terms in the exponent. Equation 8 can then be Ve 1 _ B(t)* _ w'"?
rewritten as ple’ L") O JAD exr{ K(t) C (28)
F(otwe) ORe [~ dr' [7 dr " 4o x where

0(r) §(=") T () B’ t7") (22) o T Ret .
whereAw = o — (AG + A)/A, Awex = wex — (AGSV + ® K2 2ChH* (29)
A9/h and @, andf andp are defined below. The equilibrium
free energy differencAG® of the two states in a polar solvent 5 Reg" (1)
has been written as the sum of the free energy difference in a B)=w' +2ImE (A +"———  (30)
nonpolarsolvent, AGp,, and the difference in the solvation free Ch
energy AGs°V between the ground and excited states of the 2 ksT
solute. In obtaining eq 22 from eq 8, wifhdefined below by =_°> 4 1 (31)
eq 25, a change of variables has been introducéet t — t3, h? 7.2

7" =1, — ty, and (for eq 25U =t; + t,. 6(7) is a step function P

that equals 1 iff = 0 and O otherwise. This step function is where the ImZ"'(t) (=ImXg(t) X{(0)J is neglected because the
introduced so that the range of integration o¥dsecomes-oo imaginary part of the correlation function is much smaller than
to o instead of O ta», and so the convolution theorem of Fourier  the real part. Moreover, in eq 25, 18V «t) is multiplied by
transform can then be appli€®l. The As is the reorganization  factors composed af andz’, and they are limited by the pump
energy arising from the “slow modes”, with a definition pulse profile and the decay time of expf*(z')/A?, respec-
analogous to that in eq 21, but for the slow variaiXgt). tively. The latter is of the same order as the" in eq 25.
The functiond (') andg(z"") in eq 22 describe the fast-mode  From eq 25 it can be inferred that the functigi’ t;w'") is the
contribution, ang(z' ,t;7"") contains the slow-mode contribution time evolution of the emission spectrum (with emission
and the optical pulse shape. These functions are given by  frequencyw') for a two-state solute that is excited at frequency
- ", if only Xs contributed to the difference in the Hamiltonians
f(7) of the two states. (Cf. the general expression for time-evolution
= exp[—&*; (T')h? + 2it'A¢ IR]exp[—i(AGy, + 4 )7'/A] emission spectrum in eq 8.)

Thereby, the time-dependent fluorescence spectrum can be
calculated from the convolution of the steady-state absorption
and emission spectra in a nonpolar solvent and the function
p(w'.t;w") given by eq 28. To calculaigw’,t;w'"), the explicit
g(r") = exp[~¢ (r")/h2 — i(AG;’p + )R] (24) numerical values of the integrated correlation funciig(t) are

needed. They can be obtained from the correlation function

= exp[-C*; (t)h? — ((AGS, — 4 )7'/H] (23)

o o u—r1"\ ,u+rt" X(t)Xs(0)Husing eq 14.
p(r' t7") = f,wdu E(T)e* (T) X For treating the correlation function, several approaches come
2 . , ., , to mind. One involves using, in effect, linear response theory,
exp-IM[E(r") + T (r) + 2T Im &'y + as Ovchinnikov and Ovchingr]ﬂkova dfdin their appFI)ication of g
77" Red"(t) —i(u+ )7 Im §"(t)] (25) a quantum field theoretic meth&@l. This treatment does not
use a molecular harmonic oscillator moé&el.In a work by
Expressions in eqs 23 and 24 are, respectively, the FourierMukamel?® a spectral density functial{w) was introduced from
transforms of the long-time emission and absorption spectra thata general consideration that involves large anharmonic vibrations
the system would have in the absence of the slow-mode of molecules. A property of such a spectral density function
(electrostatic) interactio?:52 These spectra can be approxi- was also discussed in the context of the fluctuatidissipation
mated by the steady-state absorption and emission spectra ofheorem ther& From such a property, the correlation function
the same solute molecule inmonpolarsolvent. Application can be written in terms of its corresponding spectral density in
of the convolution theorem to eq 22 then yields the frequency domai#:>°
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X () X(0)0= % [do J(w)(cot@ coswt — i sinot
(32)

wheref = 1/kgT. Even though the terms inside the parentheses
of the integrand resemble the correlation function of a harmonic
oscillatory%9 eq 32 is obtained from a general consideration of
the properties of correlation functions and is not limited to any
harmonic oscillator modép-58.5°

The spectral density(w) can be related to a measurable
property of the solvent, the dielectric dispersigiw). With

the simple continuum model, the linear response theory can be

applied to obtain the response function for a time-varying dipole
representing the solute. Such response function is closely relate
to the correlation functiofiXy(t) Xs(0)Cheeded heré?6! In ref

55 a homogeneous boundary condition was implicitly assumed
and a form ofJ(w) in terms ofe(w) was obtained. For a point
dipole in a sphere cavity model, the spectral den¥{ty) is37:62

|

whereAu is the change in the dipole moment of the solute in
the two states, andis the radius of the cavity. For a spherical
cavity filled with dielectric material having a dielectric constant
€c to account for the electronic polarizability of the solute, the

€(w)—1

Vi
2¢(w) +1

Jw) = 2

(33)

Hsu et al.

The term Rel"4(t), when normalized, yields\i(t) in our
previous work3®

3. Application

Using experimental data fas(w) for the solvents, all the
correlation functions of the solvent modes needed can be
calculated with the aid of egs 33 (or 34), 37, and 38. The overall
spectral line shape can be then obtained from eqs 26 and 28.

The dielectric dispersiore(w) of acetonitrile has been
measured for a wide frequency range. At low frequencies,
Barthel et al. reported parameters for a CaBole equation
for frequencies lower than 89 GHZ& which corresponds
oughly to 3 cntl. In the microwave and far-infrared region
frequencies up to 200 or 250 ch) the optical constants
(complex refractive indexes) have been repoffe®® The
absorption peak at about 378 chwas measured and described
in ref 73. For the infrared region, there is the early work by
Goplen et af* and Bertie’s recent work®

For the present calculation, the parameters of €Glele
equation in ref 67 are used for the low-frequency region. For
frequencies higher than 3 cri we first obtain the imaginary
partk(v) of the complex refractive indexd(v) = n(¥) — ik())
from data in the literaturé®73.75.76 The absorption coefficients
o(?) reported in refs 70 and 73 can be convertek(® by
dividing o by 27%. A cubic spline interpolatioff- "8 was then
used to obtairk(v) for any given frequency. The Kramers

corresponding expression is (compare related expressions in ref?(ronig transformatiof® was used to obtain the real part of

8, 11, 45, and 6365)

€(w)—1
2¢(w) + €,

2A1°
a3

€.+ 2
J(w) =— (

m’ 3 ) (34)
which reduces to eq 33 wheq is assumed to be unity.

The correlation function os can now be obtained using
the above expressions fdw) and eq 32. The integrated
correlation functionig(t) is then, from eq 14, given by

& =
A e
A

J(@)

2
w

dw — coswt) — i(wt — sinwt)

(35)

Two functions needed in eqs 29 and 30 to calculate the time-
dependent fluorescence spectrunfare

Im &'(t) = % [ do %(—1 + coswt) (36)
A o, Jw)
=—Ah+—=[ dw——=coswt
7o 407 -

Re " () = ReX{(t) X(0)=
% /5 dw J(w) cothBha/2) coswt (38)

They can be calculated using Fourier cosine transform subrou-
tines. The second term of eq 37, if normalized to unity at

0, is the same as the functidx(t) used in ref 36 and has been
shown to beS(t), the dynamic Stokes shift functidf. Namely

meosth(w)/w dw

39
S5 ) (@) do 59

refractive indexn(v), from k(7):

2 VK@) di

n(») =n, + EP 0 22 (40)

whereP denotes the principal value of the integral, and the upper
limit “ " denotes an optical frequency, where= n... It has
been show# that to obtainn(¥) at infrared frequencies by
integrating overk(¥) in only the infrared region, the above
equation can be rewritten as

5 K(G) A

o ~2 ~ay 2
n(v) ~ (2 + a7 + ai’) + ~P J. -2 (41)

0 1';:2_

where the first three terms in parentheses are a suitable
approximation to the contribution from the UV absorption. For
the present calculation, coefficiene,(a;, anday) are obtained
from those given in ref 80. The numerical integration using eq
41 gives am(¥) in good agreement with the values reported in
refs 70, 75, and 81. The dielectric dispersigmw) for those
frequencies equals the square of the complex refractive index,
n(v) — ik(¥), and so is now known.

The values of In'(t) and ReZ"(t) are obtained using the
dielectric dispersion data obtained above and eqs 33 (or 34),
37, and 38. The nonpolar reference spectra are those published
in ref 9 for C153 in 2-methylbutane. In the calculation we also
need a number forAGs°V + Ag/A, which is the change in
absorption frequency due to a change in solvent polarity. This
guantity for a polar molecule is dependent on solvent polarity
and the dipole moments of both states of the molecule (cf. eq
20 of ref 30 or eq 4.2 of ref 9). In the present work 14907ém
is used for this quantity, XG°v + Ag/A, for C153 in
acetonitrile8?

The overall spectral shift due to the polar interactionAg 2
which is proportional to the factoAu?a® in eqs 33 and 34.
Maroncelli and Fleming have examined the steady-state Stokes
shift measurements of C153 in various polar solvents and have



Large Molecules in Polar Solvents J. Phys. Chem. A, Vol. 102, No. 16, 199863

acetonitrile acetonitrile
1
3.
0.8
~0.6
> L
e n0.4
U)2'
ot 0.2
b
c 0
-
2 ’
T 0.8
=
,q_q) 20.6
“ (/)0.4
0. 0.2
0 ps 0
0 0.5 1 1.5 2

42— 18 20 22 24

3 -1
VvV (10 . . .
. . ( cn _) ) . Figure 3. Top panel: the dynamic Stokes sht) for acetonitrile
Figure 2. Calculated time-dependent emission spectra for coumarin cgjculated using eq 33 (solid line) and the results fitted to experimental
153 in acetonitrile at different delay times (solid lines) and the {at8 (dashed line). Bottom panel: calculated) using eq 34 (solid

experimental data (dots inferred from the figures in ref 10). The delay |ine) with ¢, = 2 and the same experimental results (dashed line).
times are indicated in the units of picosecond. Baselines for different

delay times are shifted vertically and are indicated at the left of the

time (ps)

" methanol
figure. 1

obtained the dipole moment change as 6.0 D if the radius of 0.8

the spherical cavity resembling the solute molecule is assumed —~0.6[k

to be 3.9 A8 From fitting the emission spectral position £

calculated at — o to the steady-state experimental fluorescence n0.4

spectrum, we obtained a similar value, 6.1 D, as the dipole 0.2

moment change for a nonpolarizable solute of the same size. 0

However, if a polarizable spherical solute model is used (eq 0 5 10 15 20 25 30
34), the size of the calculated dipole is smaller for the given 1

solvation free energy: Assumirg= 2.0} the dipole moment 0.8

change is estimated to be 5.1 D from the same resultiras

that calculated using the nonpolarizable model with= 6.1 EO -6 '

D.8% Using thise; andAu for the polarizable model, the result n0.4

of the overall calculation for the time-dependent emission 0.2

spectrum is compared in Figure 2 with the experimental 0

spectrum obtained from ref 10. In the calculation wetget 510 15 20 25 30
50 fs, which corresponds to 118 fs fwhm in the correlation time (ps)
i)gt;lv?re]lipulseg.th(Tge vaIu_esS(t)fléH_WS fs is rlep(?rtte?j Ifn ref Figure 4. Top panel: the dynamic Stokes shift) for methanol
: gure 3 the dynamic Stokes st#{), calculated from . 1ateq using eq 33 (solid line) and the results fitted to experimental
the second term of eq 37, is plotted together with that obtained q5¢4 (dashed line). Bottom panel: calculat&fl) using eq 34 (solid
from experimen®. line) with . = 2 and the same experimental results (dashed line).
We have also calculated a dynamic Stokes shift for metha-
nol: Dielectric dispersion data for methanol are available for a solute model using eq 34 with the cavity dielectric constant

wide range of frequencies. The parameters obtained from fitting = 2 are also given in Figure 4, and the agreement is seen to be
microwave measurements to a three-term Debye model havesomewhat improved.

been reported for frequencies less than 295 Gkl cnt1).84
The complex refractive indexes of methanol from 2 to 8000 4 piscussion
cm~! have been reported in ref 85. For frequencies from 2 to
50 cntl, the dielectric dispersion was also measured by Kindt ~ There is seen to be reasonably good agreement in Figure 2
et al® A three-term Debye model fit was performed in the between the position and spectral shapes of the calculated time-
latter work, and the dielectric dispersion results obtained from dependent spectra in acetonitrile and those from experiment,
those parameters agree fairly well with the lower frequency when the possible experimental uncertainties are considered,
results reported by Bertf&. For the present calculation a cubic  especially at early time®. This result supports the idea that
spline fit of the tabulated numbers from Bertie’s work was used the dynamics observed is mainly relaxation from the polar
for frequencies higher than 8 cth For frequencies lower than  interaction between the solute and the solvent. In a recent article
8 cnr! the three-term Debye fit reported in ref 84 was used. on shorter timeg the authors reported very early transient
The calculatedS(t) is compared in Figure 4 with the absorption and gain (spontaneous emission) spectra after a pump
experimental results of ref 9. In this case the plot from dipole pulse of C153 in acetonitrile and methanol. At short those times
in a spherical cavity model is seen to deviate from that from (<300 fs) the gain band is red-shifted with two isosbestic points
experiment. Results from a calculation using the polarizable appearing successively. It has been ndtedat such results

O
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may imply that some intramolecular process is involved in the This result agrees, as noted earlier, with the 6.0 D estimated in
earlier dynamics. ref 8 from the steady-state experimental spectrum using the same
The time dependence of the emission spectrum in polar Nonpolarizable model.
solutions has long been a subject of interest. In the 1960s and The calculated dynamic Stokes shift result for acetonitrile,
1970s, experiments were performed on the nanosecond timeshown in Figure 3, has an oscillation period of about 0.3 ps,
scale®85and thekineticsof the spectrum was discussed in terms  which arises from a strong far-infrared absorption at about 100
of the lifetime of the excited state and the orientational relaxation cm™1. The results in Figure 3 with polarizable solute are quite
of the solvent molecules. The latter was related to the dielectric close to those reported in a recent wéflcalculated from a
dispersion,e(w),}? and a Debye form was used fe(w) to theory that the authors developed for the longitudinal linear
account for the orientation dipole relaxatibr$:®> A stochastic dielectric response of polarizable solvents with given shape and
theory was also proposed to describe the time evolution of the charge distribution. (That theory includask spatial depen-
spectrum (cf. recent work by Maroncelli and co-workétg?). dence.) No such oscillation is reported in the experimental data,
As the techniques advanced, the dynamics in the femtosecondout the latter depend on the time resolution of the technique
time regime became observable, and so a relaxation in theand the data processing used. In ref 9 it is indicated that the
intermolecular vibrations (e.g., the librational mode for wa- deconvolution of an instrumental response function has been
ter!339 has become important in understanding the experimental performed on the raw emission intensity data. It would be
results in that time region. The low-frequency intramolecular interesting to see if such an oscillatory correlation function can
vibrations in both solute and solvents may also affect the early be observed in experiments with finer time resolution, such as
time evolution. By including in the dielectric dispersion the that in photon echo€?.
IR frequency region, we have taken the solvent vibrational = The dynamic Stokes shift results for methanol are shown in
modes into account. Figure 4 and display an appreciable discrepancy when compared
In the present work we have considered the case, in deriving With experimeng. It is seen there that the inclusion ef to
the expressions used in calculations, that the vibrational represent polarizability of solute improves somewhat the agree-
relaxation is complete before the time of observing fluorescence. ment of experiment and theoty#** Since we use the simple
A short-range nonpolar interaction and the relaxed vibrational dielectric continuum in describing the solvent and extend the
contribution were included in an approximate way, by using frequency range to include IR frequencies, the entire response
the absorption and emission spectra incapolarsolvent. For of the bulk solvent to a change in electric field is considered.
experiments with a higher time resolution or with techniques Using other theoretical methods, namely, the dynamical MSA
that are more sensitive to short-time dynamics, the solute theory and the molecular hydrodynamic theory, the following
vibrational relaxation should be considered explicitly. In the results have been obtained for polar solvents:
present case, it was found in ref 9 that almost no time Inref9 it was shown thatin the case of methanol, a calculated
dependence of the spectral shift is observed in their observationst) using a model for the dielectric dispersion with the far-
on the fluorescence of C153 in 2-methylbutane and that the infrared dielectric response included is significantly faster than
transient fluorescence spectrum is very close to that of the measured dynamic Stokes shift from experiment. In the same
steady-state fluorescence spectrum for the same system (all ar&vork the authors compared the dynamics calculated from the
Stark-shifted from the absorption spectral maximum). This dynamical MSA theory? which includes a spatial-dependent
result shows that in this nonpolar solvent the relaxation to dielectric response, with the experimerf). They concluded
equilibrium free energy of the excited state occurs within the that the dynamical MSA theory gives results that are slower
time resolution (120 fs fwhm instrumental resposef the than those from a simple continuum model which is used in
experiment and so supports the assumption of fast re|axingthe present work. For most of the cases studied in ref 9, the
internal modes made in the present study. The assumption itselfdynamical MSA theory predicts a dynamical behavior slower
provides a major simplification and permits the simple applica- than the experimental one for C153 if a dipolar hard sphere is
tion of expressions for a two-level problem to a real system. used to represent the solute. On the other hand, when the neutral
In the present calculation, there are two undetermined diPolar solute was modeled as an ion, an improved agreement
quantities that are inferred from experimental spectra. One is Was obtained in applying the dynamical MSA theory. However,
(AGV + A)/k, the difference between averaged absorption & charge dlstrlbgtlon appropriate to the actgal one should of
spectra in polar and in nonpolar solvents. For the present study,COUrse be used in comparing with the experimesl
a value of this quantity was chosen so as to yield agreement In @ recent article, Bagchi and co-workers applied their
between the calculated and the reported (estimated) zero-timemolecular hydrodynamic theory, which includes rotational and
fluorescence spectrum in ref 10. The other undetermined translational contributions of solvent polarization relaxation, to
quantity, Au?/a3, is proportional tols and so is proportional to ~ monohydroxy alcohol8? They reported the calculatetipolar
the overall dynamic spectral shift. The latter is also related to Solvation to be slightly slower than the experimental observation.
the width of p(w' t;w") (eq 29). However the width of this Again, when thg negtral djpolar C153 solu_te is hypothetically
p(w' t;w") has only a small influence on the line shape of final modeled as an ion in their model calculations, there is better
convoluted spectruni(,t;wey), because of the large Franek ~ agreement between the calculated and experim&tje®
Condon vibrational contribution to the width. Thereby, the =~ We have investigated the effect of pulse width by changing
quantity Au%a3 can be estimated solely from the spectral shift the pulse duratiom, of Gaussian pulses from the limit of very
arising from the polar interaction, namely, the frequency short pulses to the limit of pulses that are much longer than the
difference of the zero-time emission spectrum and the steady-dephasing timef{,/A&;T) (but still shorter than the fluores-
state fluorescence spectrum in the polar solvent. With the cence observation time), by taking the limits of small and large
nonpolarizable model, the change in dipole moment is estimatedz; in the expressions in egs 29 and 30. Results of calculations
to be 6.1 D, using the peak frequency difference of the zero- of these two limiting cases showed negligible changes in the
time estimated emission spectrum and the steady-state emissiomwidths in the emission spectra (of the order of 10~érfor
spectrum in methanol reported in refs 32 and 9, respectively. acetonitrile). The small effect of the pulse widths can be
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