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A method is described for incorporating the vibronic transitions of a solute molecule in the calculation of the
time evolution of its fluorescence spectrum in a polar solvent. In this initial article, systems are treated in
which the intramolecular vibrational relaxation is much faster than the observed delay time. The overall
fluorescence spectrum is then shown to be a convolution of the steady-state absorption and emission spectra
of the solute in anonpolar solvent and the time-dependent emission line shape arising only from polar
interactions. Calculations are made for coumarin 153 in acetonitrile, using the dielectric dispersion data of
the solvent available from experimental measurements. The results are in encouraging agreement with
experimental spectra. Results are also given for the dynamic Stokes shift in methanol.

1. Introduction

The dynamics of polar solvents has been studied in charge
redistribution processes in many chemical reactions and photo-
induced processes.1-29 Pioneering works, in both theory and
experiment in nanosecond time scales, were performed by
Bakhshiev, Mazurenko, and their coworkers.1-4 Experimentally,
the time-dependent fluorescence shift (thedynamic Stokes shift)
has been measured over different time scales and for a variety
of polar solvents.6-15 In typical Stokes shift experiments a
chromophoric solute dissolved in a polar solvent is first excited
by a pump pulse, and the time-dependent fluorescence spectrum
of the solute is then recorded. For studies with coumarin or
other dye molecules (e.g., refs 7-15), the excited state of the
solute has a charge distribution quite different from that of the
ground state. The change in charge distribution causes the polar
solvent to adjust its configuration to minimize the interaction
free energy. Such processes have been monitored by measuring
the dynamics Stokes shift,S(t):

whereν(t) is either the peak or the averaged frequency of the
transient emission spectrum.
It has been shown for coumarin 153 (C153) in polar solvents

that such Stokes shift measurements can be described in terms
of the polar solvation processes.9,10,14,15,21,30For systems with
an infinitely short pump pulse,S(t) is expected to follow the
normalized classical correlation function of the interaction
energy between the solute and solvent.29-35 However, when
the pulse has a finite duration, it has been shown that theS(t)
is a linear combination of the classical and quantum correlation
functions of the interaction,36 a combination in which the
quantum correlation term vanishes in the limit of a very short
pump pulse.
Theoretical developments16-29 have provided much physical

insight into solvation dynamics. Solvation correlation functions
calculated from the Debye form, the Davidson-Cole and the
Cole-Cole forms have been shown to exhibit significant

differences.16 On the basis of similar calculations and com-
parisons with experiments, it has been noted that it would be
useful to obtain higher frequency dielectric data for a better
description ofS(t), the solvation correlation function.14

Much attention has been devoted to treating theoretically the
spatial dependence of dielectric response function,ε(k, ω),
which includes the molecular nature of solvent.19 The dynami-
cal mean spherical approximation theory has been used, for
example.18,20,21 A systematic comparison of theS(t) predicted
by dynamical mean spherical approximation theory with that
in experiments was reported in ref 9. It was found there that a
slower dynamics is usually predicted by the dynamical mean
spherical approximation theory, when the solute is modeled as
a dipolar sphere. A molecular hydrodynamic theory22,23 has
been applied to a variety of systems with a model dielectric
response function. Agreement between the experimental and
calculated solvation correlation function was reported for
water,23,24 alcohols,25 and acetonitrile.26 Molecular dynamics
calculations have provided information on the influence of polar
solvents on the reaction rate27 and on the role played by various
shells of solvent molecules.16,29 The short-time solvation
dynamics has also been interpreted in terms of aninstantaneous
normal modesanalysis of molecular dynamics simulations.28

The line shape of the time-evolving emission spectrum is
considered in the present work. Mukamel and co-workers have
developed formal expressions for various optical processes.37-39

In those works the transient emission spectrum was expressed
in terms of a direct summation over all vibronic transitions, in
which each transition is described by the time evolution of a
single transition between two vibronic states and that evolution
was derived from the perturbation theory.40 Maroncelli and co-
workers9,41,42and Mazurenko4 have provided a phenomenologi-
cal description for estimating the fluorescence at time zero. At
the very short time limit, it was assumed that the solvent is
frozen but that the internal vibrational relaxation in the solute
molecule is already complete. We recall the results here for
discussion and application later:
Following Maroncelli and Mazurenko,4,42 the zero-time

fluorescence can be written as proportional to a quantityFP
given by

S(t) )
ν(t) - ν(0)
ν(∞) - ν(0)

(1)
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wheregnp(ω) describes the absorption spectrum of the solute
molecule andfnp(ω) is the emission line shape, both in a
nonpolar solvent. Thep1(ω) describes the probability distribu-
tion of the polar solvent configurations which have a given
energy differencepω between the two states of the solute
molecule, sampled from the polar solvent configurations in
thermal equilibrium with thegroundelectronic state of the solute
molecule. Such an energy difference of the two solute electronic
states is assumed to arise from the polar solute-solvent
interaction. Thus,p1(ω) would have been the absorption line
shape in polar solution, if there had been only a difference in
thepolar interactions of the ground- and excited-state Hamil-
tonians. In applying eq 2, the nonpolar reference absorption
and emission spectra are used to obtaingnp(ω) andfnp(ω):9,41,42

whereAnp is the absorption spectrum andFnp is the steady-
state emission spectrum, for the same solute in a nonpolar
reference solvent.
One might imagine that an extension of eq 2 for a phenom-

enological description of the time-dependent fluorescence can
be written as4

wherep(ω′,t;ω′′) is the time evolution of a probability distribu-
tion for the energy difference of the two states of the solute
that have a energy differencepω′′ at t ) 0 which then drifts to
pω′ at time t, if only polar solute-solvent interactions were
included. This drift in the energy difference is due to the
difference in charge distributions of solute in the two electronic
states. Thus,p(ω′,t;ω′′) can also be regarded as the time
evolution of the emission spectral line shape (with emission
frequencyω′) when the pump frequency isω′′ for the two-
state solute if there were only the polar interaction with the
solvent. The desired properties ofp(ω′,t;ω′′) are

where the first property is needed to yield eq 2 as a special
case of eq 5, and the second property means that at very long
time, the spectral shiftsω′ andω′′ are independent. Thep2(ω′)
denotes the equilibrium probability distribution of energy
difference (spectral shift), sampled from solvent configurations
in thermal equilibrium with theexcited-state solute charge
distribution. Thusp2(ω′) is also the steady-state emission line
shape for the two-state solute when only polar interactions with
the solvent are considered.
In the present work it is shown that eq 5 can be obtained

from perturbation theory using Mukamel’s formalism. The
result provides a method for including the vibronic transitions
of the dye molecule in the time-dependent fluorescence spec-
trum. The major physical approximation made is a time
separation of the motions. For the purpose of the present article,

the nonpolar interactions between the solute and solvent as well
as the intramolecular vibrational motion are treated as instan-
taneous, while in the literature a Brownian oscillator model is
sometimes used.37,43 The remaining motion is the electrostatic
interaction between the solute and the polar solvent. It is
assumed to provide all the measurable dynamics in the current
upconversion fluorescence experiments.
The outline of the paper is as follows: The general theoretical

description of the fluorescence spectrum is presented in section
2.1. The separation of contributions from the above time scales
of motion to the interaction energy is made in section 2.2. The
results of applying expressions obtained in section 2 to C153
in acetonitrile, using the dielectric continuum model with
experimentalε(ω) data, are given in section 3. The results are
discussed in section 4. It has been pointed out44 in a treatment
of the dynamic Stokes shift that the inclusion of some
description of the electronic polarizability of the solute8,11,45

leads to an improved agreement, and that behavior is also found
here. Concluding remarks are given in section 5.

2. Theory

2.1. General Formalism for the Time Evolution of the
Fluorescence Spectrum.The time evolution of the fluores-
cence spectrum has been treated by Mukamel and co-work-
ers.37,38 With their formalism, the time-dependent emission
spectrumF(ω,t;ωex), the spectral intensity at timet of the
fluorescence at frequencyω when the frequency of excitation
is ωex can be calculated from the perturbation theory.40 The
solute molecule is considered to have two electronic states|g〉
and |e〉, whose energies are dependent on both the internal
vibration coordinates and the configuration of the solvent
molecules. Under the Condon approximation, an explicit
expression forF(ω,t;ωex) can be obtained using fourth-order
perturbation theory for the interaction between the material and
the radiation to calculate the time evolution of the density
matrix:37,38,40

where Re denotes the real part of the function,E1 andE2 are
the electric field strengths of the pump pulse and the emitting
light, respectively,µ is the transition dipole moment,e(t) is the
profile of the pump pulse, andR is a four-point correlation
function:

Here, exp+ (exp-) is the time-ordered (reverse-ordered) expo-
nential function,〈‚‚‚〉 indicates that the quantity is averaged over
a thermal equilibrium with solute molecule in theground state
(≡Tr[e-âHg‚‚‚]), andø is the difference in Hamiltonians:

whereHe andHg are the Hamiltonians for the excited-state and
ground-state solute molecule, respectively. They are dependent
on both the intramolecular and intermolecular configurations.
The ø(τ) in eq 9 is the time evolution ofø under theground-
state Hamiltonian:

F(ω,t;ωex) )

|E1µ
p2
|2|E2µ

p2
|2Re∫-∞

t
dt3∫-∞

t
dt1∫-∞

t
dt2×

eiω(t - t3)eiωex(t2 - t1) e(t1)e*( t2)R(t1,t2,t3;t) (8)

R(t1,t2,t3;t) ) 〈exp-
i
p
∫t2 - t1

t3 - t1ø(τ1) dτ1 exp+
-i
p
∫0t - t1ø(τ2) dτ2〉

(9)

ø ) He - Hg (10)

FP(ω,t)0;ωex) )

ω3ωex∫-∞

∞
dω′′ gnp(ωex - ω′′) fnp(ω - ω′′) p1(ω′′) (2)

ωgnp(ω) ∝ Anp(ω) (3)

ω3fnp(ω) ∝ Fnp(ω) (4)

FP(ω,t;ωex) ) ω3ωex∫-∞

∞
dω′∫-∞

∞
dω′′ ×

gnp(ωex - ω′′) fnp(ω - ω′) p(ω′,t;ω′′) (5)

p(ω′,t)0;ω′′) ) p1(ω′′) δ(ω′ - ω′′) (6)

lim
tf∞

p(ω′,t;ω′′) ) p1(ω′′) p2(ω′) (7)
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Using the second-order cumulant expansion46 for R in eq 9, we
have

with

The stationarity of the correlation function〈X(τ1) X(τ2)〉 was
used in obtaining eq 14.
The diagram corresponding to the evolution of density matrix

used in obtaining eq 8 is given in Figure 1. In eq 12, the terms
ú(t2 - t1) andú*( t - t3) are related to the line shapes of the
absorption and emission spectra, respectively.47 The remaining
four ú terms in the exponent ofR(t1,t2,t3;t) in eq 12 can be
simplified as follows: The ranges oft1 and t2 are limited by
the excitation pulse profile,e(t), while the observation of
fluorescence at timet can be much later. The time (t - t3) is
limited by the decay time of exp[-ú*( t - t3)/p2]. For example,
for systems at room temperature (such as in ref 9) with a
reorganization energyλ of the order 1000 cm-1 arising from
the polar solvation, the decay time for both exp[-ú(t2 - t1)/p2]
and exp[-ú*( t - t3)/p2] is of the order of 10 fs (cf. eq 27 below).
The latter limits|t2 - t1| and|t - t3| to be of the order of 10 fs.
It is then reasonable to assume, for a simplification of the
exponent in eq 12, that

Equation 16 implies a significant time difference between the
optical absorption (att1, t2) during the pulse and the subsequent
fluorescence (att3, t) after the pulse. At the observation time
t, the algebraic sum of the latter fourú terms in eq 12,ú(t - t1)
- ú(t3 - t1) - ú*( t - t2) + ú*( t3 - t2), is approximated by a
Taylor expansion at timet, to second order int1, t2, and
(t - t3):

where the primes denote the first and second derivatives ofú(t),
and Re and Im denote the real part and imaginary part of the
functions, respectively.48 The first term in the right-hand side
of eq 17 is the leading term of the algebraic sum of the fourú
functions. It results in a spectral shift in the Fourier transform
to the frequency domain. Thereby, those fourú functions in
the exponent of eq 12 generate the time-dependent spectral shift,
among other (higher order) effects.
In the next section, we describe a way of treating the

intramolecular vibrational modes of the solute molecule.
2.2. Treatment of the Internal Vibrational Relaxation.

For a polar molecular such as C153 in a polar solvent, the
ground-state and excited-state energies have a different depen-
dence on the internal vibration coordinate and on the solvent
configuration. The solvent part can be considered to be
composed of both nonpolar and polar interactions. The nonpolar
interaction arises, in part, from any difference in size or shape
of the wave functions of the two electronic states, and the polar
part arises from the electrostatic interaction of the solvent
polarization with the different charge distribution of the ground
and excited states of the solute molecules. Thereby,X can be
divided into two parts:

whereXf arises from the intramolecular vibrations of the solute
and the van der Waals type of nonpolar interaction between
the solute and solvent, both treated here as fast.Xs is the part
of energy difference arising from the electrostatic interaction
between the solute and polar solvent, which then provides the
major contribution to the dynamic Stokes shift and is assumed
to respond more slowly than theXf for the present study. For
studies with higher time resolution or for other solutes and
solvents, the assumption that theXf response is instantaneous
can be removed by using a model, Brownian oscillators for
example,37,43 and we may do so later for a related problem.
Assuming Xf and Xs to be statistically independent, the

correlation function inX can be separated as

The correspondingú function becomes

For the fast modes,〈Xf (t) Xf (0)〉 is assumed to decay to zero
before the fluorescence is observed in the experiment. Namely,
we approximate the correlation function arising from such fast
motions by its long time limit. Thereby, the fast mode
contribution to the right-hand side of eq 17 yields 2i(t - t3)λf /
p arising from the first term, and zero from the other two terms,

Figure 1. Double-sided Feynman diagram for the process of excitation
and fluorescence for a two-state system. In this diagram, the density
matrix is represented by the two vertical lines. The line on the left
represents the ket and the line on the right represents the bra, with
time running vertically from bottom to top. An interaction with the
radiation field is represented by an arrow. The direction of such an
arrow determines the sign of the wave vector contribution to the
polarization, which is not explicitly considered in the present study.t1
andt2 are any two times occurring during the absorption (pump) pulse.
In the integration in eq 8, the excitation timest1 andt2 can be reversed.
t3 and t are the two times when fluorescence occurs.

ø(τ) ) eiHgτ/pøe-iHgτ/p (11)

R(t1,t2,t3;t) )

ei(∆G° + λ)(t3 - t + t1 - t2)/p exp(-1/p2)[ú(t2 - t1) + ú*( t - t3) +

ú(t - t1) - ú(t3 - t1) - ú*( t - t2) + ú*( t3 - t2)] (12)

ú(τ) ≡ ∫0τdτ1∫0τ1dτ2 〈X(τ1) X(τ2)〉 (13)

)∫0τdu (τ - u)〈X(u) X(0)〉 (14)

X) ø - 〈ø〉 (15)

0≈ t1∼ t2 , t3∼ t (16)

ú(t - t1) - ú(t3 - t1) - ú*( t - t2) + ú*( t3 - t2) =

2i(t - t3) Im ú′(t) + (t2 - t1)(t - t3) Reú′′(t) -
i(t2 + t1 + t - t3)(t - t3) Im ú′′(t) (17)

X) Xs + Xf (18)

〈X(τ1) X(τ2)〉 ) 〈Xf (τ1) Xf (τ2)〉 + 〈Xs(τ1) Xs(τ2)〉 (19)

ú(t) ) úf (t) + ús(t) (20)
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whereλf is

[The second equality in eq 21 can be seen from the definition
of ú(t) in eq 13.] With the above definition,λf is the
reorganization energy arising from the fast modes.49 This fast-
mode contribution, 2i(t - t3)λf /p, yields a constant spectral shift
2λf /p in the emission frequencyω when introduced into eqs
12 and 8.
In rewriting the time-dependent fluorescenceF(ω,t;ωex) in

eq 8 with the separation of fast and slow modes, eq 20 is used
for all six ú functions in eq 12. The approximation given in eq
17 is used, with the terms for fast modes being simplified as
described above, and the result is used to rewriteF(ω,t;ωex) in
eq 8. Such manipulation is followed by a rearrangement of
the various terms in the exponent. Equation 8 can then be
rewritten as

where∆ω ≡ ω - (∆Gsolv + λs)/p, ∆ωex ≡ ωex - (∆Gsolv +
λs)/p and g̃, and f̃ and p̃ are defined below. The equilibrium
free energy difference∆G° of the two states in a polar solvent
has been written as the sum of the free energy difference in a
nonpolarsolvent,∆G°np, and the difference in the solvation free
energy∆Gsolv between the ground and excited states of the
solute. In obtaining eq 22 from eq 8, withp̃ defined below by
eq 25, a change of variables has been introduced:τ′ ≡ t - t3,
τ′′ ≡ t2 - t1, and (for eq 25)u≡ t1 + t2. θ(τ) is a step function
that equals 1 ifτ g 0 and 0 otherwise. This step function is
introduced so that the range of integration overτ′ becomes-∞
to∞ instead of 0 to∞, and so the convolution theorem of Fourier
transform can then be applied.50 The λs is the reorganization
energy arising from the “slow modes”, with a definition
analogous to that in eq 21, but for the slow variable,Xs(t).
The functionsf̃ (τ′) andg̃(τ′′) in eq 22 describe the fast-mode

contribution, andp̃(τ′,t;τ′′) contains the slow-mode contribution
and the optical pulse shape. These functions are given by

Expressions in eqs 23 and 24 are, respectively, the Fourier
transforms of the long-time emission and absorption spectra that
the system would have in the absence of the slow-mode
(electrostatic) interaction.51,52 These spectra can be approxi-
mated by the steady-state absorption and emission spectra of
the same solute molecule in anonpolarsolvent. Application
of the convolution theorem to eq 22 then yields

with ω0 ≡ (∆Gsolv + λs)/p. The equation above is of the form
given by eq 5. The factorsω3 andωex are obtained by summing
over the emission photon mode and converting the number of
absorption photons into energy units.53

To integrate eq 25 for the purposes of the present paper, a
Gaussian optical pulse,e(t) ∼ exp(-t2/τp2), is assumed, though
this assumption is a convenience rather than a necessity. When
the Gaussian approximation54

is used to obtain the Fourier transform ofp̃(τ′,t;τ′′), the result
of these manipulations yields

where

where the Imú′′s(t) ()Im〈Xs(t) Xs(0)〉) is neglected because the
imaginary part of the correlation function is much smaller than
the real part. Moreover, in eq 25, Imú′′s(t) is multiplied by
factors composed ofu andτ′, and they are limited by the pump
pulse profile and the decay time of exp[-ú* s(τ′)/p2], respec-
tively. The latter is of the same order as theτ′τ′′ in eq 25.
From eq 25 it can be inferred that the functionp(ω′,t;ω′′) is the
time evolution of the emission spectrum (with emission
frequencyω′) for a two-state solute that is excited at frequency
ω′′, if only Xs contributed to the difference in the Hamiltonians
of the two states. (Cf. the general expression for time-evolution
emission spectrum in eq 8.)
Thereby, the time-dependent fluorescence spectrum can be

calculated from the convolution of the steady-state absorption
and emission spectra in a nonpolar solvent and the function
p(ω′,t;ω′′) given by eq 28. To calculatep(ω′,t;ω′′), the explicit
numerical values of the integrated correlation functionús(t) are
needed. They can be obtained from the correlation function
〈Xs(t)Xs(0)〉 using eq 14.
For treating the correlation function, several approaches come

to mind. One involves using, in effect, linear response theory,
as Ovchinnikov and Ovchinnikova did55 in their application of
a quantum field theoretic method.56 This treatment does not
use a molecular harmonic oscillator model.57 In a work by
Mukamel,58 a spectral density functionJ(ω) was introduced from
a general consideration that involves large anharmonic vibrations
of molecules. A property of such a spectral density function
was also discussed in the context of the fluctuation-dissipation
theorem there.58 From such a property, the correlation function
can be written in terms of its corresponding spectral density in
the frequency domain:58,59

λf ≡ -(1/p)lim
tf∞

Im ú′f (t)

) -(1/p)∫0∞Im 〈Xf (t) Xf (0)〉 dt (21)

F(ω,t;ωex) ∝ Re∫-∞

∞
dτ′∫-∞

∞
dτ′′ ei∆ωτ′ ei∆ωexτ′′ ×
θ(τ′) g̃(τ′′) f̃ (τ′) p̃(τ′,t;τ′′) (22)

f̃ (τ′)
≡ exp[-ú* f (τ′)/p2 + 2iτ′λf /p]exp[-i(∆G°np + λf )τ′/p]

) exp[-ú* f (τ′)/p2 - i(∆G°np - λf )τ′/p] (23)

g̃(τ′′) ≡ exp[-úf (τ′′)/p2 - i(∆G°np + λf )τ′′/p] (24)

p̃(τ′,t;τ′′) ≡ ∫-∞

∞
du e(u- τ′′

2 )e* (u+ τ′′
2 ) ×

exp(-1/p2)[ús(τ′′) + ú* s(τ′) + 2iτ′ Im ú′s(t) +
τ′τ′′ Reú′′s(t) - i(u+ τ′)τ′ Im ú′′s(t)] (25)

F(ω,t;ωex) ∝∫-∞

∞
dω′∫-∞

∞
dω′′ ×

g(ωex - ω′′) f (ω - ω′) p(ω′ - ω0,t;ω′′ - ω0) (26)

exp(-1/p2)ús(t) ≈ exp(-λskBTt
2/p2) (27)

p(ω′,t;ω′′) ∝ 1

xA(t) exp[-
B(t)2

4A(t)
- ω′′2

C ] (28)

A(t) )
λskBT

p2
-
Reú′′s(t)

2

2Cp4
(29)

B(t) ) ω′ + 2 Im ú′s(t)/p
2 + ω′′

Reú′′s(t)

Cp2
(30)

C)
2λskBT

p2
+ 1

τp
2

(31)
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whereâ ≡ 1/kBT. Even though the terms inside the parentheses
of the integrand resemble the correlation function of a harmonic
oscillatory,60 eq 32 is obtained from a general consideration of
the properties of correlation functions and is not limited to any
harmonic oscillator model.55,58,59

The spectral densityJ(ω) can be related to a measurable
property of the solvent, the dielectric dispersionε(ω). With
the simple continuum model, the linear response theory can be
applied to obtain the response function for a time-varying dipole
representing the solute. Such response function is closely related
to the correlation function〈Xs(t) Xs(0)〉 needed here.59,61 In ref
55 a homogeneous boundary condition was implicitly assumed
and a form ofJ(ω) in terms ofε(ω) was obtained. For a point
dipole in a sphere cavity model, the spectral densityJ(ω) is37,62

where∆µ is the change in the dipole moment of the solute in
the two states, anda is the radius of the cavity. For a spherical
cavity filled with dielectric material having a dielectric constant
εc to account for the electronic polarizability of the solute, the
corresponding expression is (compare related expressions in refs
8, 11, 45, and 63-65)

which reduces to eq 33 whenεc is assumed to be unity.
The correlation function ofXs can now be obtained using

the above expressions forJ(ω) and eq 32. The integrated
correlation functionús(t) is then, from eq 14, given by

Two functions needed in eqs 29 and 30 to calculate the time-
dependent fluorescence spectrum are66

They can be calculated using Fourier cosine transform subrou-
tines. The second term of eq 37, if normalized to unity att )
0, is the same as the function∆(t) used in ref 36 and has been
shown to beS(t), the dynamic Stokes shift function.30 Namely

The term Reú′′s(t), when normalized, yields∆1(t) in our
previous work.36

3. Application

Using experimental data forε(ω) for the solvents, all the
correlation functions of the solvent modes needed can be
calculated with the aid of eqs 33 (or 34), 37, and 38. The overall
spectral line shape can be then obtained from eqs 26 and 28.
The dielectric dispersionε(ω) of acetonitrile has been

measured for a wide frequency range. At low frequencies,
Barthel et al. reported parameters for a Cole-Cole equation
for frequencies lower than 89 GHz,67,68 which corresponds
roughly to 3 cm-1. In the microwave and far-infrared region
(frequencies up to 200 or 250 cm-1) the optical constants
(complex refractive indexes) have been reported.69-72 The
absorption peak at about 378 cm-1 was measured and described
in ref 73. For the infrared region, there is the early work by
Goplen et al.74 and Bertie’s recent work.75

For the present calculation, the parameters of Cole-Cole
equation in ref 67 are used for the low-frequency region. For
frequencies higher than 3 cm-1, we first obtain the imaginary
partk(ν̃) of the complex refractive index (n̂(ν̃) ) n(ν̃) - ik(ν̃))
from data in the literature:70,73,75,76 The absorption coefficients
R(ν̃) reported in refs 70 and 73 can be converted tok(ν̃) by
dividing R by 2πν̃. A cubic spline interpolation77,78was then
used to obtaink(ν̃) for any given frequency. The Kramers-
Kronig transformation79 was used to obtain the real part of
refractive index,n(ν̃), from k(ν̃):

whereP denotes the principal value of the integral, and the upper
limit “ ∞” denotes an optical frequency, wheren ) n∞. It has
been shown80 that to obtainn(ν̃) at infrared frequencies by
integrating overk(ν̃) in only the infrared region, the above
equation can be rewritten as

where the first three terms in parentheses are a suitable
approximation to the contribution from the UV absorption. For
the present calculation, coefficients (a0, a1, anda2) are obtained
from those given in ref 80. The numerical integration using eq
41 gives ann(ν̃) in good agreement with the values reported in
refs 70, 75, and 81. The dielectric dispersionε(ω) for those
frequencies equals the square of the complex refractive index,
n(ν̃) - ik(ν̃), and so is now known.
The values of Imú′s(t) and Reú′′s(t) are obtained using the

dielectric dispersion data obtained above and eqs 33 (or 34),
37, and 38. The nonpolar reference spectra are those published
in ref 9 for C153 in 2-methylbutane. In the calculation we also
need a number for (∆Gsolv + λs)/p, which is the change in
absorption frequency due to a change in solvent polarity. This
quantity for a polar molecule is dependent on solvent polarity
and the dipole moments of both states of the molecule (cf. eq
20 of ref 30 or eq 4.2 of ref 9). In the present work 1490 cm-1

is used for this quantity, (∆Gsolv + λs)/p, for C153 in
acetonitrile.82

The overall spectral shift due to the polar interaction is 2λs,
which is proportional to the factor∆µ2/a3 in eqs 33 and 34.
Maroncelli and Fleming have examined the steady-state Stokes
shift measurements of C153 in various polar solvents and have

〈Xs(t) Xs(0)〉 ) p
π∫0∞dω J(ω)(cothâpω

2
cosωt - i sinωt)

(32)

J(ω) ) - 2∆µ2

a3
Im[ ε(ω) - 1

2ε(ω) + 1] (33)

J(ω) ) - 2∆µ2

a3
Im[ ε(ω) - 1

2ε(ω) + εc](εc + 2

3 ) (34)

ús(t) )

p
π∫0∞ dω

J(ω)

ω2 [cothâpω
2
(1- cosωt) - i(ωt - sinωt)]

(35)

Im ú′s(t) ) p
π∫0∞dω

J(ω)
ω

(-1+ cosωt) (36)

) - λsp + p
π∫0∞dω

J(ω)
ω

cosωt
(37)

Reú′′s(t) ) Re〈Xs(t) Xs(0)〉 )
p
π∫0∞ dω J(ω) coth(âpω/2) cosωt (38)

S(t) )
∫0∞cosωtJ(ω)/ω dω

∫0∞J(ω)/ω dω
(39)

n(ν̃) ) n∞ + 2
π
P∫0∞ν̃′k(ν̃′) dν̃′

ν̃′ 2 - ν̃2
(40)

n(ν̃) ≈ (a0 + a2ν̃
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4) + 2
π
P∫0ν̃IRν̃′k(ν̃′) dν̃′

ν̃′ 2 - ν̃2
(41)
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obtained the dipole moment change as 6.0 D if the radius of
the spherical cavity resembling the solute molecule is assumed
to be 3.9 Å.8 From fitting the emission spectral position
calculated att f ∞ to the steady-state experimental fluorescence
spectrum, we obtained a similar value, 6.1 D, as the dipole
moment change for a nonpolarizable solute of the same size.
However, if a polarizable spherical solute model is used (eq
34), the size of the calculated dipole is smaller for the given
solvation free energy: Assumingεc ) 2.0,11 the dipole moment
change is estimated to be 5.1 D from the same resultingλs as
that calculated using the nonpolarizable model with∆µ ) 6.1
D.83 Using thisεc and∆µ for the polarizable model, the result
of the overall calculation for the time-dependent emission
spectrum is compared in Figure 2 with the experimental
spectrum obtained from ref 10. In the calculation we setτp )
50 fs, which corresponds to 118 fs fwhm in the correlation
between pulses. (The values of 112-125 fs is reported in ref
10.) In Figure 3 the dynamic Stokes shiftS(t), calculated from
the second term of eq 37, is plotted together with that obtained
from experiment.9

We have also calculated a dynamic Stokes shift for metha-
nol: Dielectric dispersion data for methanol are available for a
wide range of frequencies. The parameters obtained from fitting
microwave measurements to a three-term Debye model have
been reported for frequencies less than 295 GHz (≈10 cm-1).84

The complex refractive indexes of methanol from 2 to 8000
cm-1 have been reported in ref 85. For frequencies from 2 to
50 cm-1, the dielectric dispersion was also measured by Kindt
et al.86 A three-term Debye model fit was performed in the
latter work, and the dielectric dispersion results obtained from
those parameters agree fairly well with the lower frequency
results reported by Bertie.85 For the present calculation a cubic
spline fit of the tabulated numbers from Bertie’s work was used
for frequencies higher than 8 cm-1. For frequencies lower than
8 cm-1 the three-term Debye fit reported in ref 84 was used.
The calculatedS(t) is compared in Figure 4 with the

experimental results of ref 9. In this case the plot from dipole
in a spherical cavity model is seen to deviate from that from
experiment. Results from a calculation using the polarizable

solute model using eq 34 with the cavity dielectric constantεc
) 2 are also given in Figure 4, and the agreement is seen to be
somewhat improved.

4. Discussion

There is seen to be reasonably good agreement in Figure 2
between the position and spectral shapes of the calculated time-
dependent spectra in acetonitrile and those from experiment,
when the possible experimental uncertainties are considered,
especially at early times.32 This result supports the idea that
the dynamics observed is mainly relaxation from the polar
interaction between the solute and the solvent. In a recent article
on shorter times87 the authors reported very early transient
absorption and gain (spontaneous emission) spectra after a pump
pulse of C153 in acetonitrile and methanol. At short those times
(e300 fs) the gain band is red-shifted with two isosbestic points
appearing successively. It has been noted87 that such results

Figure 2. Calculated time-dependent emission spectra for coumarin
153 in acetonitrile at different delay times (solid lines) and the
experimental data (dots inferred from the figures in ref 10). The delay
times are indicated in the units of picosecond. Baselines for different
delay times are shifted vertically and are indicated at the left of the
figure.

Figure 3. Top panel: the dynamic Stokes shiftS(t) for acetonitrile
calculated using eq 33 (solid line) and the results fitted to experimental
data9 (dashed line). Bottom panel: calculatedS(t) using eq 34 (solid
line) with εc ) 2 and the same experimental results (dashed line).

Figure 4. Top panel: the dynamic Stokes shiftS(t) for methanol
calculated using eq 33 (solid line) and the results fitted to experimental
data9 (dashed line). Bottom panel: calculatedS(t) using eq 34 (solid
line) with εc ) 2 and the same experimental results (dashed line).
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may imply that some intramolecular process is involved in the
earlier dynamics.
The time dependence of the emission spectrum in polar

solutions has long been a subject of interest. In the 1960s and
1970s, experiments were performed on the nanosecond time
scale,3,65and thekineticsof the spectrum was discussed in terms
of the lifetime of the excited state and the orientational relaxation
of the solvent molecules. The latter was related to the dielectric
dispersion,ε(ω),1,2 and a Debye form was used forε(ω) to
account for the orientation dipole relaxation.1-3,65 A stochastic
theory was also proposed to describe the time evolution of the
spectrum4 (cf. recent work by Maroncelli and co-workers41,42).
As the techniques advanced, the dynamics in the femtosecond
time regime became observable, and so a relaxation in the
intermolecular vibrations (e.g., the librational mode for wa-
ter13,30) has become important in understanding the experimental
results in that time region. The low-frequency intramolecular
vibrations in both solute and solvents may also affect the early
time evolution. By including in the dielectric dispersion the
IR frequency region, we have taken the solvent vibrational
modes into account.
In the present work we have considered the case, in deriving

the expressions used in calculations, that the vibrational
relaxation is complete before the time of observing fluorescence.
A short-range nonpolar interaction and the relaxed vibrational
contribution were included in an approximate way, by using
the absorption and emission spectra in anonpolarsolvent. For
experiments with a higher time resolution or with techniques
that are more sensitive to short-time dynamics, the solute
vibrational relaxation should be considered explicitly. In the
present case, it was found in ref 9 that almost no time
dependence of the spectral shift is observed in their observations
on the fluorescence of C153 in 2-methylbutane and that the
transient fluorescence spectrum is very close to that of the
steady-state fluorescence spectrum for the same system (all are
Stark-shifted from the absorption spectral maximum). This
result shows that in this nonpolar solvent the relaxation to
equilibrium free energy of the excited state occurs within the
time resolution (120 fs fwhm instrumental response9) of the
experiment and so supports the assumption of fast relaxing
internal modes made in the present study. The assumption itself
provides a major simplification and permits the simple applica-
tion of expressions for a two-level problem to a real system.
In the present calculation, there are two undetermined

quantities that are inferred from experimental spectra. One is
(∆Gsolv + λs)/p, the difference between averaged absorption
spectra in polar and in nonpolar solvents. For the present study,
a value of this quantity was chosen so as to yield agreement
between the calculated and the reported (estimated) zero-time
fluorescence spectrum in ref 10. The other undetermined
quantity,∆µ2/a3, is proportional toλs and so is proportional to
the overall dynamic spectral shift. The latter is also related to
the width of p(ω′,t;ω′′) (eq 29). However the width of this
p(ω′,t;ω′′) has only a small influence on the line shape of final
convoluted spectrum,F(ω,t;ωex), because of the large Franck-
Condon vibrational contribution to the width. Thereby, the
quantity∆µ2/a3 can be estimated solely from the spectral shift
arising from the polar interaction, namely, the frequency
difference of the zero-time emission spectrum and the steady-
state fluorescence spectrum in the polar solvent. With the
nonpolarizable model, the change in dipole moment is estimated
to be 6.1 D, using the peak frequency difference of the zero-
time estimated emission spectrum and the steady-state emission
spectrum in methanol reported in refs 32 and 9, respectively.

This result agrees, as noted earlier, with the 6.0 D estimated in
ref 8 from the steady-state experimental spectrum using the same
nonpolarizable model.
The calculated dynamic Stokes shift result for acetonitrile,

shown in Figure 3, has an oscillation period of about 0.3 ps,
which arises from a strong far-infrared absorption at about 100
cm-1. The results in Figure 3 with polarizable solute are quite
close to those reported in a recent work,88 calculated from a
theory that the authors developed for the longitudinal linear
dielectric response of polarizable solvents with given shape and
charge distribution. (That theory includesa k spatial depen-
dence.) No such oscillation is reported in the experimental data,
but the latter depend on the time resolution of the technique
and the data processing used. In ref 9 it is indicated that the
deconvolution of an instrumental response function has been
performed on the raw emission intensity data. It would be
interesting to see if such an oscillatory correlation function can
be observed in experiments with finer time resolution, such as
that in photon echoes.89

The dynamic Stokes shift results for methanol are shown in
Figure 4 and display an appreciable discrepancy when compared
with experiment.9 It is seen there that the inclusion ofεc to
represent polarizability of solute improves somewhat the agree-
ment of experiment and theory.11,44 Since we use the simple
dielectric continuum in describing the solvent and extend the
frequency range to include IR frequencies, the entire response
of the bulk solvent to a change in electric field is considered.
Using other theoretical methods, namely, the dynamical MSA
theory and the molecular hydrodynamic theory, the following
results have been obtained for polar solvents:
In ref 9 it was shown that in the case of methanol, a calculated

S(t) using a model for the dielectric dispersion with the far-
infrared dielectric response included is significantly faster than
measured dynamic Stokes shift from experiment. In the same
work the authors compared the dynamics calculated from the
dynamical MSA theory,18 which includes a spatial-dependent
dielectric response, with the experimentalS(t). They concluded
that the dynamical MSA theory gives results that are slower
than those from a simple continuum model which is used in
the present work. For most of the cases studied in ref 9, the
dynamical MSA theory predicts a dynamical behavior slower
than the experimental one for C153 if a dipolar hard sphere is
used to represent the solute. On the other hand, when the neutral
dipolar solute was modeled as an ion, an improved agreement
was obtained in applying the dynamical MSA theory. However,
a charge distribution appropriate to the actual one should of
course be used in comparing with the experimentalS(t).
In a recent article, Bagchi and co-workers applied their

molecular hydrodynamic theory, which includes rotational and
translational contributions of solvent polarization relaxation, to
monohydroxy alcohols.25 They reported the calculateddipolar
solvation to be slightly slower than the experimental observation.
Again, when the neutral dipolar C153 solute is hypothetically
modeled as an ion in their model calculations, there is better
agreement between the calculated and experimentalS(t).25

We have investigated the effect of pulse width by changing
the pulse durationτp of Gaussian pulses from the limit of very
short pulses to the limit of pulses that are much longer than the
dephasing time (p/xλskBT) (but still shorter than the fluores-
cence observation time), by taking the limits of small and large
τp in the expressions in eqs 29 and 30. Results of calculations
of these two limiting cases showed negligible changes in the
widths in the emission spectra (of the order of 10 cm-1 for
acetonitrile). The small effect of the pulse widths can be
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understood as follows: As shown in section 2.2 and eq 26, the
overall time-dependent spectrum is a convolution ofp(ω′,t;ω′′)
and the steady-state absorption and emission spectra in a
nonpolar solvent. The absorption and emission spectra in the
nonpolar solvent have a large width, largely due to the quantized
in-plane aromatic ring vibrations, which serve as a frame for
the spectra that is filled in by absorption or emission due to the
lower frequency modes. While in a more detailed study the
correct shape of pulse profile could be used and it may lead to
a change inp(ω′,t;ω′′) (eq 25), it is not expected to be able to
change the overall spectrumF(ω,t;ωex) significantly after the
convolution with the large-width reference nonpolar absorption
and emission spectra.
For the same reason, the line-shape information obtained from

the functionp(ω′,t;ω′′) is mostly buried in the convolution with
the large-width reference spectra. As seen in eqs 28 and 29,
the spectral evolution of a single transition has its spectral width
controlled by the quantum correlation function (the expression
in eq 38). However, after convolution with the broad reference
absorption and emission spectra, the effect of spectral width of
a single transition is quite small in the final result. Thus, the
quantum solvent effect cannot be easily retrieved from the final
spectral line shape for such systems. The time evolution of
the fluorescence spectral bandwidths were measured and
reported for C153 in dimethyl sulfoxide (DMSO)9 and for
1,1′,3,3,3′,3′-hexamethylindotricarbocyanine (HITC) in etha-
nol.90 With the advances in techniques in obtaining data with
an improved time resolution and with a continuum spectral
measurement, it should be possible to address more closely the
evolution of emission bandwidth and other details of the line
shape in terms of solvation dynamics and molecular properties.

5. Conclusion
A theory of time-dependent fluorescence spectrum for a polar

solute in polar solvents is formulated and applied to C153 in
acetonitrile in the present study. The dynamics of the fast
motion of intramolecular vibration and the nonpolar collision-
like interaction is assumed to be the same in nonpolar solvents
and polar solvents and such motion is seen to decay rapidly.
Polar solvents provide additional electrostatic interaction whose
dynamics is slower and is observed in the experiments. On
the basis this assumption, we have developed a method for
including the vibronic transitions of the dye molecule in the
time-dependent fluorescence spectrum, and the results for C153
in acetonitrile are close to experimental ones.
Since it is now possible to estimate the overall time-dependent

spectrum, a presentation of the data for the time-evolution
fluorescence spectrum in numerical form, rather than only a
fitted analytic functional form, would remove the added
approximation of the fitting.
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